Skip to main content

Micropower Voltage Regulator Circuit Diagram


This circuit was developed to power an AVR microcontroller from a 12 V lead-acid battery. The regulator itself draws only 14 µA. Of course, there are dedicated ICs, for example from Linear Technology or Maxim, which can be used, but these can be very hard to get hold of and are frequently only available in SMD packages these days. These difficulties are simply and quickly avoided using this discrete circuit.

Circuit diagram :


The series regulator component is the widely-available type BS170 FET. When power is applied it is driven on via R1. When the output voltage reaches 5.1 V, T2 starts to conduct and limits any further rise in the output voltage by pulling down the voltage on the gate of T1. The output voltage can be calculated as follows:

UOUT = (ULED + UBE) × (R4 + R2) / R4

where we can set ULED at 1.6 V and UBE at 0.5 V. The temperature coefficients of ULED and UBE can also be incorporated into the formula. The circuit is so simple that of course someone has thought of it before. The author’s efforts have turned up an example in a collection of reference circuits dating from 1967: the example is very similar to this circuit, although it used germanium transistors and of course there was no FET. The voltage reference was a Zener diode, and the circuit was designed for currents of up to 10 A. Perhaps our readers will be able to find even earlier examples of two-transistor regulators using this principle?



Comments

Popular posts from this blog

Digital Fan Regulator Circuit Diagram

This is the project of Digital Fan Regulator Circuit diagram. The circuit presented here can be used to control the speed of  fans using induction motor. The speed control is nonlinear, i.e. in steps. The current step number is displayed on a 7-segment display. Speed can be varied over a wide range because the circuit can alter the voltage applied to the fan motor from 130V to 230V RMS in a maximum of seven steps.  The triac used in the final stage is fired at different angles to get different voltage outputs by applying short-dura-tion current pulses at its gate. For this pur-pose a UJT relax-ation oscillator is used that outputs sawtooth waveform. This waveform is coupled to the gate of the triac through an optocoupler (MOC3011) that has a triac driver output stage.  Pedestal voltage control is used for varying the firing angle of the triac. The power supply for the relaxation oscillator is derived from the rectified mains via 10-kilo-ohm, 10W series dropping/limit-ing...

Home automation with Telegram BOT

The project I’m going to describe today it’s a sort of proof of concept that will demonstrate the possibility to remote control sensors and actuators (for example a couple of relays) via Telegram. Telegram is an instant messaging application, similar to the famous Whatsapp. Last June, the Telegram developers announced that a new set of APIs were available to develop bots. [ ]

24 Hour Timer

Description: These two circuits are multi-range timers offering periods of up to 24 hours and beyond. Both are essentially the same. The main difference is that when the time runs out, Version 1 energizes the relay and Version 2 de-energizes it. The first uses less power while the timer is running; and the second uses less power after the timer stops. Pick the one that best suits your application. Notes: The Cmos 4060 is a 14 bit binary counter with a built in oscillator. The oscillator consists of the two inverters connected to Pins 9, 10 & 11; and its frequency is set by R3, R4 & C3.The green Led flashes while the oscillator is running: and the IC counts the number of oscillations. Although it's a 14 bit counter, not all of the bits are accessible. Those that can be reached are shown on the drawing. By adjusting the frequency of the oscillator you can set the length of time it takes for any given output to go high. This output then switches the transistor; which in turn o...