Skip to main content

Automatic Evening Lamp Circuit Diagram


Presented here is a solution for switching off outdoor lamps even when you are not at home. The lamp turns on in the evening and turns off in the morning so that there is no need for manually switching it on/off. The circuit is directly powered from AC mains and can be enclosed in a plug-in type adaptor box. It can drive a bulb, CFL, tubelight, LED lamp, etc up to 200W. Author’s prototype is shown in Fig. 1.

Circuit and working

Author’s prototype
Fig. 1: Author’s prototype

The circuit uses a transformer-less power supply to generate low-volt DC. As capacitors C1 and C2 are connected in AC lines, these should be X-rated capacitors. This minimises space and makes the unit light-weight. Unlike an ordinary capacitive power supply, a more efficient power supply design is used for spike-free operation. Phase (L) and neutral (N) lines have identical circuits so reversal in polarity while plugging will not affect the circuit. 105K (1µF) 400V AC capacitors are used that can drop 230V AC to low-level AC. Resistors R1 and R2 protect the power supply from instant inrush current. Bleeder resistors R3 and R4, parallel to C1 and C2, remove the stored current from the capacitors at power off to prevent shock from stored energy in the capacitors.

A full-wave rectifier bridge comprising D1 through D4 (1N4007) rectifies low-volt AC to DC and smoothing capacitor C3 gives ripple-free DC for the circuit. The output voltage from the power supply is sufficient to operate the circuit including the relay. Green LED1 indicates power-on status. Resistor R5 limits LED current.

Automatic Evening Lamp Circuit Diagram
Fig. 2: Circuit diagram of an automatic evening lamp

The circuit is a simple bi-stable arrangement using popular timer IC 555 (IC1). ing its threshold (pin 6) and trigger (pin 2) controls its flip-flop operation. When the threshold input is high, it resets the flip-flop and keeps the output low. When the trigger input is low, flip-flop triggers and output turns high. So the combined action of threshold and trigger inputs gives the bi-stable switching action to control relay driver transistor T1. The bi-stable action of IC1 is controlled by LDR1 and resistor R6 (470k). The value of 5mm LDR can be up to 1 mega-ohm, depending on the ambient light conditions. A 1MΩ variable resistor in place of R6 can make the sensitivity adjustment easy.

During day time, LDR1 has low resistance, which makes threshold pin 6 of IC1 high. This resets the timer and the output of IC1 remains low. It takes transistor T1 to cut-off state. The relay is de-energised, so the lamp remains off during day time.

Actual-size PCB layout of an automatic evening lamp

Fig. 3: Actual-size PCB layout of an automatic evening lamp

Component layout of the PCB
Fig. 4: Component layout of the PCB

When the intensity of sunlight reduces in the evening, LDR1 offers more resistance and the current through it ceases. This makes both threshold and trigger inputs of IC1 low and the timer changes its output to high. Transistor T1 is switched on due to saturation action. The relay is energised, contact change-over takes place and line is extended to bulb B1. As the circuit is complete, the bulb will be switched on. It will remain lit throughout the night.



In the morning, the situation will get reversed; threshold pin 6 and trigger pin 2 go high, timer reverses its output. Transistor T1 goes into cut-off region. The relay will be de-energised and the bulb will get switched off.

Capacitor C5 at the base of transistor T1 gives a slight lag during on/off of T1 for the clean operation of the relay. Freewheeling diode D5 eliminates back EMF from the relay coil and protects T1 during its switch off. Red LED2 indicates the actuation of the relay.

Construction and testing
An actual-size, single-side PCB layout for the automatic evening lamp is shown in Fig. 3 and its component layout in Fig. 4. After assembling the circuit on a PCB, enclose it in a suitable plastic case.

Give sufficient spacing between the power supply section and the remaining circuit. Provide holes on the front side of the enclosure for LEDs and LDR. Connect phase line (L) to the common contacts of the relay and neutral line (N) for the bulb to the N/O (normally open) contacts of the relay. A 5V PCB relay is used. Ratings of the relay must match with the load. Since the circuit is directly powered from high-volt AC, extreme care is necessary during testing.

First assemble the power supply section up to green LED and connect to AC lines. If the green LED turns on, power supply section is alright. After disconnecting the circuit from mains, assemble the circuit around IC1. Test this part using a 9V battery connected across capacitor C3. If relay RL1 energises after masking LDR1, the bi-stable section is working.

Now the relay connections can be done. Keep the unit outdoor in a place where sufficient light is available. Light from the lamp should not fall on LDR1.

Caution. Since this circuit has mains voltage on board, extreme precautions need to be taken. Do not troubleshoot when it is connected to the mains. Test only after taking adequate precautions to prevent shock hazards.



Sourced By: EFY: Author:  D. Mohan Kumar

Comments

Popular posts from this blog

Digital Fan Regulator Circuit Diagram

This is the project of Digital Fan Regulator Circuit diagram. The circuit presented here can be used to control the speed of  fans using induction motor. The speed control is nonlinear, i.e. in steps. The current step number is displayed on a 7-segment display. Speed can be varied over a wide range because the circuit can alter the voltage applied to the fan motor from 130V to 230V RMS in a maximum of seven steps.  The triac used in the final stage is fired at different angles to get different voltage outputs by applying short-dura-tion current pulses at its gate. For this pur-pose a UJT relax-ation oscillator is used that outputs sawtooth waveform. This waveform is coupled to the gate of the triac through an optocoupler (MOC3011) that has a triac driver output stage.  Pedestal voltage control is used for varying the firing angle of the triac. The power supply for the relaxation oscillator is derived from the rectified mains via 10-kilo-ohm, 10W series dropping/limit-ing...

Home automation with Telegram BOT

The project I’m going to describe today it’s a sort of proof of concept that will demonstrate the possibility to remote control sensors and actuators (for example a couple of relays) via Telegram. Telegram is an instant messaging application, similar to the famous Whatsapp. Last June, the Telegram developers announced that a new set of APIs were available to develop bots. [ ]

24 Hour Timer

Description: These two circuits are multi-range timers offering periods of up to 24 hours and beyond. Both are essentially the same. The main difference is that when the time runs out, Version 1 energizes the relay and Version 2 de-energizes it. The first uses less power while the timer is running; and the second uses less power after the timer stops. Pick the one that best suits your application. Notes: The Cmos 4060 is a 14 bit binary counter with a built in oscillator. The oscillator consists of the two inverters connected to Pins 9, 10 & 11; and its frequency is set by R3, R4 & C3.The green Led flashes while the oscillator is running: and the IC counts the number of oscillations. Although it's a 14 bit counter, not all of the bits are accessible. Those that can be reached are shown on the drawing. By adjusting the frequency of the oscillator you can set the length of time it takes for any given output to go high. This output then switches the transistor; which in turn o...