Skip to main content

Power Supply Failure Alarm


Most of the power supply failure indicator circuits need a separate power-supply for them-selves. But the alarm circuit presented here needs no additional supply source. It employs an electrolytic capacitor to store adequate charge, to feed power to the alarm circuit which sounds an alarm for a reasonable duration when the mains supply fails. During the presence of mains power supply, the rectified mains voltage is stepped down to a required low level.

Circuit diagram :

Power-Supply-Failure-Alarm Circuit Diagram

Power Supply Failure Alarm Circuit Diagram


A zener is used to limit the filtered voltage to 15-volt level. Mains presence is indicated by an LED. The low-level DC is used for charging capacitor C3 and reverse biasing switching transistor T1. Thus, transistor T1 remains cut-off as long as the mains supply is present. As soon as the mains power fails, the charge stored in the capacitor acts as a power-supply source for transistor T1. Since, in the absence of mains supply, the base of transistor is pulled ‘low’ via resistor R8, it conducts and sounds the buzzer (alarm) to give a warning of the power-failure.

With the value of C3 as shown, a good-quality buzzer would sound for about a minute. By increasing or decreasing the value of capacitor C3, this time can be altered to serve one’s need. Assembly is quite easy. The values of the components are not critical. If the alarm circuit is powered from any external DC power-supply source, the mains supply section up to points ‘P’ and ‘M’can be omitted from the circuit.

Following points may be noted:

1. At a higher  DC voltage level, transistor T1 (BC558) may pass some collector-to-emitter leakage current, causing a continuous murmuring sound from the buzzer. In that case, replace it with some low-gain transistor.

2. Piezo buzzer must be a continuous tone version, with built-in oscillator. To save space, one may use five small-sized 1000µF capacitors (in parallel) in place of bulky high-value capacitor C3.

Author : M.K. Chandra Mouleeswaran Copyright: EFY Mag


Comments

Popular posts from this blog

Digital Fan Regulator Circuit Diagram

This is the project of Digital Fan Regulator Circuit diagram. The circuit presented here can be used to control the speed of  fans using induction motor. The speed control is nonlinear, i.e. in steps. The current step number is displayed on a 7-segment display. Speed can be varied over a wide range because the circuit can alter the voltage applied to the fan motor from 130V to 230V RMS in a maximum of seven steps.  The triac used in the final stage is fired at different angles to get different voltage outputs by applying short-dura-tion current pulses at its gate. For this pur-pose a UJT relax-ation oscillator is used that outputs sawtooth waveform. This waveform is coupled to the gate of the triac through an optocoupler (MOC3011) that has a triac driver output stage.  Pedestal voltage control is used for varying the firing angle of the triac. The power supply for the relaxation oscillator is derived from the rectified mains via 10-kilo-ohm, 10W series dropping/limit-ing resistor R2. 

Home automation with Telegram BOT

The project I’m going to describe today it’s a sort of proof of concept that will demonstrate the possibility to remote control sensors and actuators (for example a couple of relays) via Telegram. Telegram is an instant messaging application, similar to the famous Whatsapp. Last June, the Telegram developers announced that a new set of APIs were available to develop bots. [ ]

24 Hour Timer

Description: These two circuits are multi-range timers offering periods of up to 24 hours and beyond. Both are essentially the same. The main difference is that when the time runs out, Version 1 energizes the relay and Version 2 de-energizes it. The first uses less power while the timer is running; and the second uses less power after the timer stops. Pick the one that best suits your application. Notes: The Cmos 4060 is a 14 bit binary counter with a built in oscillator. The oscillator consists of the two inverters connected to Pins 9, 10 & 11; and its frequency is set by R3, R4 & C3.The green Led flashes while the oscillator is running: and the IC counts the number of oscillations. Although it's a 14 bit counter, not all of the bits are accessible. Those that can be reached are shown on the drawing. By adjusting the frequency of the oscillator you can set the length of time it takes for any given output to go high. This output then switches the transistor; which in turn o