Skip to main content

Why is my RGB or Single Color Flexible LED Strip Lights so Dim at One End about the use of the LED amplifier


Whenever a current is flowing, the current will meet some resistance or something will impede its flow, the amount of voltage loss through the entirety of a circuit, or even a part is voltage drop. In low voltage lighting systems such as flexible LED strip lights, voltage drops occur because the input voltage from the power supply gradually decreases over the length of the strip.

The longer the flexible led strip light tape, the more resistance the current has to overcome, hence it loses voltage along the way. The result is dimming lights the further down the LED strip you get because the light emitting diodes (SMD chips) at the end of the strip are less bright than those at the start, which is closest to the power supply. This condition causes the load to work harder with less voltage pushing the current.

If the flexible LED strip light runs off a 12-volt power supply, then you have 12 volts going into the strip light system at the start but the other end will not have 12 volts due to the voltage drop. This can be prevented with some simple rules that are outlined below.

Voltage drop is a function of wire length, wire thickness, and the total watts of power used by the flexible LED strip lights. A reduction of brightness and color accuracy in longer flexible LED strip lights is due to excessive voltage drop. The excessive voltage drop may result in unsatisfactory operation of, and damage to, electrical outlets and the flexible LED strip tape lights. The distance from the power source to the desired end distance of the flexible LED strip tape is called a run. Shorter and/or thicker wires will raise the brightness and color consistency to the strip lights’ full potential.

We at LEDStripSales.com LED Lighting can help you choose the right power supply, gauge of wire, and distance of wire to match the right length of flexible LED strip lights, so you experience minimal voltage drop. If the run is too long and you experience voltage drop, we will help you find solutions to overcome the problem.


One solution to a voltage drop issue is to run the LED strip lights in parallel. As pictured here, there are three parallel runs from one power supply as opposed to one power supply sourcing the full strip of lights. Ideally, you want the shortest length of wire from the power supply to the flexible LED strip lights. On the second and third run however, this is not possible, and on the third one we add a thicker gauge wire, which allows for more current to travel through the wire to the because of the larger surface area of wire.


A multimeter also called a multitester can be used to measure the voltage at the end of the run. The acceptable voltage drop for a flexible LED light system should not exceed %3 or be lower than .36 volts from a 12 volt input power supply.

12 volts x 3% = 0.36 volts.

At LEDstripsales.com LED Lighting, we will show you how to do this in an upcoming video.

Basic voltage drop law is Vdrop = IR

I: the current through the object, measured in amperes

R: the resistance of the wires, measured in ohms

When calculating voltage drop, keep these things in mind:

Total wattage draw of your flexible led light system- This is done by multiplying the wattage of your flexible LED strip light by the distance of your run. This will be either in meters or feet/inches depending on the information you are given about your flexible LED strip lights. Ex: If your 5050 60 LED/M strip lights are 14.4 watts per meter and the length of the strip light is 2.5 meters, multiplying 14.4 by 2.5 will give you the total wattage draw.
Length of the wire starting from the power supply to the front of the flexible led strip light.
Thickness of the wire you are using in your flexible led light system; the thicker the wire the smaller the number. This is known as wire gauge (AWG). This table shows the appropriate wire gauge to use depending on how far away the flexible LED strip light is from the power supply:

Wattage and amperage of direct current (DC) power supply.
Load current- In DC system there is no power factor, so we can find the current easily. Power=voltage x current       current(I)=power/voltage

So you can use the LED strip light amplifiers to solve this problem.

About Single color Flexible LED strip lights amplifier connection


About Color Change RGB Flexible LED strip lights amplifier connection









About RGBW(RGB+White) Flexible LED strip lights amplifier connection



About Color Temperature Flexible LED strip lights amplifier connection



Comments

Popular posts from this blog

Digital Fan Regulator Circuit Diagram

This is the project of Digital Fan Regulator Circuit diagram. The circuit presented here can be used to control the speed of  fans using induction motor. The speed control is nonlinear, i.e. in steps. The current step number is displayed on a 7-segment display. Speed can be varied over a wide range because the circuit can alter the voltage applied to the fan motor from 130V to 230V RMS in a maximum of seven steps.  The triac used in the final stage is fired at different angles to get different voltage outputs by applying short-dura-tion current pulses at its gate. For this pur-pose a UJT relax-ation oscillator is used that outputs sawtooth waveform. This waveform is coupled to the gate of the triac through an optocoupler (MOC3011) that has a triac driver output stage.  Pedestal voltage control is used for varying the firing angle of the triac. The power supply for the relaxation oscillator is derived from the rectified mains via 10-kilo-ohm, 10W series dropping/limit-ing...

Home automation with Telegram BOT

The project I’m going to describe today it’s a sort of proof of concept that will demonstrate the possibility to remote control sensors and actuators (for example a couple of relays) via Telegram. Telegram is an instant messaging application, similar to the famous Whatsapp. Last June, the Telegram developers announced that a new set of APIs were available to develop bots. [ ]

24 Hour Timer

Description: These two circuits are multi-range timers offering periods of up to 24 hours and beyond. Both are essentially the same. The main difference is that when the time runs out, Version 1 energizes the relay and Version 2 de-energizes it. The first uses less power while the timer is running; and the second uses less power after the timer stops. Pick the one that best suits your application. Notes: The Cmos 4060 is a 14 bit binary counter with a built in oscillator. The oscillator consists of the two inverters connected to Pins 9, 10 & 11; and its frequency is set by R3, R4 & C3.The green Led flashes while the oscillator is running: and the IC counts the number of oscillations. Although it's a 14 bit counter, not all of the bits are accessible. Those that can be reached are shown on the drawing. By adjusting the frequency of the oscillator you can set the length of time it takes for any given output to go high. This output then switches the transistor; which in turn o...